Stereotactic Ablative Radiotherapy for Prostate Cancer

Laurie Cuttino, MD

Associate Professor of Radiation Oncology VCU Massey Cancer Center
Director of Radiation Oncology Sarah Cannon Cancer Center at Henrico Doctors’ Hospital
Scope of the Problem

Estimated New Cases

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td>164,690</td>
<td>266,120</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>121,680</td>
<td>112,350</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>75,610</td>
<td>64,640</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>62,380</td>
<td>63,230</td>
</tr>
<tr>
<td>Melanoma of the skin</td>
<td>55,150</td>
<td>40,900</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
<td>42,680</td>
<td>36,120</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>41,730</td>
<td>32,950</td>
</tr>
<tr>
<td>Oral cavity & pharynx</td>
<td>37,160</td>
<td>26,240</td>
</tr>
<tr>
<td>Leukemia</td>
<td>35,030</td>
<td>25,270</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
<td>30,610</td>
<td>22,660</td>
</tr>
<tr>
<td>All sites</td>
<td>856,370</td>
<td>878,980</td>
</tr>
</tbody>
</table>

Estimated Deaths

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung & bronchus</td>
<td>83,550</td>
<td>70,500</td>
</tr>
<tr>
<td>Prostate</td>
<td>29,430</td>
<td>40,920</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>27,390</td>
<td>23,240</td>
</tr>
<tr>
<td>Pancreas</td>
<td>23,020</td>
<td>21,310</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
<td>20,540</td>
<td>14,070</td>
</tr>
<tr>
<td>Leukemia</td>
<td>14,270</td>
<td>11,350</td>
</tr>
<tr>
<td>Esophagus</td>
<td>12,850</td>
<td>10,100</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>12,520</td>
<td>9,660</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>11,510</td>
<td>8,400</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
<td>10,010</td>
<td>7,340</td>
</tr>
<tr>
<td>All sites</td>
<td>323,630</td>
<td>286,010</td>
</tr>
</tbody>
</table>
Incidence Trends

• An estimated 164,690 new cases of prostate cancer will be diagnosed in the US during 2018

• In the late 1980s and early 1990s, incidence rates for prostate cancer spiked dramatically, (widespread screening with the PSA blood test)
Incidence Trends

• Decline in rates since around 2000
• Likely due to recommendations against routine PSA screening beginning in 2008
• From 2010 to 2014, the rate decreased by about 10% per year
Mortality Trends

• An estimated 29,430 deaths from prostate cancer will occur in 2018

• Prostate cancer death rates have been decreasing since the early 1990s, although rates appear to have stabilized from 2013 to 2015
<table>
<thead>
<tr>
<th>Risk group</th>
<th>Clinical/pathologic features</th>
</tr>
</thead>
</table>
| Very low | • T1c AND
• Gleason score ≤6/grade group 1 AND
• PSA <10 ng/mL AND
• Fewer than 3 prostate biopsy fragments/cores positive, ≤50% cancer in each fragment/core AND
• PSA density ≤0.15 ng/mL |
| Low | • T1-T2a AND
• Gleason score ≤6/grade group 1 AND
• PSA <10 ng/mL |
| Favorable Intermediate | • T2b-T2c OR
• Gleason score 3+4=7/grade group 2 OR
• PSA 10–20 ng/mL AND
• Percentage of positive biopsy cores <50% |
| Unfavorable Intermediate| • T2b-T2c OR
• Gleason score 3+4=7/grade group 2 or Gleason score 4+3=7/grade group 3 OR
• PSA 10–20 ng/mL |
| High | • T3a OR
• Gleason score 8/grade group 4 or Gleason score 4+5=9/grade group 5 OR
• PSA >20 ng/mL |
| Very high | • T3b-T4 OR
• Primary Gleason pattern 5 OR
• >4 cores with Gleason score 8–10/grade group 4 or 5 |
Treatment of Localized Disease

- Surgery
- Radiotherapy (RT)
- Active surveillance (low risk only)
- No difference in risk of dying of prostate cancer 10 years after diagnosis between these options
 - Surgery and RT associated with lower risk of disease progression and metastasis

Patient Reported Outcomes

• 1643 men in the Prostate Testing for Cancer and Treatment (ProtecT) trial
• Questionnaires before diagnosis, at 6 and 12 months after treatment, and annually thereafter
 – urinary, bowel, and sexual function
 – quality of life
 – anxiety and depression
 – general health

Patient Reported Outcomes

• Prostatectomy had the greatest negative effect on sexual function and urinary continence
 – Although there was some recovery, these outcomes remained worse in the prostatectomy group than in the other groups throughout the trial

• The negative effect of radiotherapy on sexual function was greatest at 6 months
 – sexual function then recovered somewhat and was stable thereafter
 – radiotherapy had little effect on urinary continence

Patient Reported Outcomes

- Sexual and urinary function declined gradually in the active-monitoring group.
- Bowel function was worse in the radiotherapy group at 6 months than in the other groups but then recovered.
- Urinary symptoms were worse in the radiotherapy group at 6 months but then mostly recovered and were similar to the other groups after 12 months.
- No significant differences were observed among the groups in measures of anxiety, depression, or general health-related or cancer-related quality of life.

Radiotherapy 101

- Radiotherapy uses a focused beam of energy to damage cancerous cells while minimizing exposure to healthy tissue.
- Radiation damages the DNA in cancer cells, which interrupts their ability to reproduce, causing them to die.
- Normal cells can recover from radiation more easily.
- Treatment is delivered to the target site with a machine called a linear accelerator (linac).
How Radiotherapy Works
Linear Accelerator
Types of Linacs
Radiosurgery

• Radiosurgery is a non-invasive treatment technique used primarily to ablate tumors
• Most suitable for small, well-defined tumors
• Despite the use of the word "surgery" in its name, radiosurgery does not involve removing the tumor
• Instead, a focused high-intensity beam of radiation is used to target a tumor while minimizing dosage to healthy tissue
• Highly precise, intensified form of radiotherapy
Radiosurgery

• Traditional radiotherapy can include up to 40 treatments (5 days a week for several weeks)
• Radiosurgery is performed in five sessions or less over a period of two weeks.
• Although the total number of radiosurgery treatments is fewer, each session usually takes more time in order to make sure the patient is accurately positioned
• Stabilization devices are often used to ensure proper positioning
Treatment Techniques

• Stereotactic radiosurgery (SRS) refers to the treatment of tumors in the brain or spinal column.
• Stereotactic body radiation therapy (SBRT) is a very similar technique to SRS but is used for targets that are outside the brain (lung, prostate, liver, pancreas).
• The latest term for these treatments is stereotactic ablative radiotherapy (SABR).
Technology

- Intensity modulated radiation therapy (IMRT) uses 3-D scans of your body to guide the beams of radiation to the tumor from many different angles.
- At each of these angles, the intensity of the radiation is varied (modulated) and the shape of the beam is changed to match the shape of the tumor.
- These adjustments enable the prescribed amount of radiation to be delivered to each part of the tumor, while minimizing exposure to the surrounding healthy tissue.
Technology

• Image-guided radiation therapy (IGRT) is a technique that uses 2D and 3D scans of the patient to guide the beams of radiation to the tumor from many different angles.

• Before each treatment, a CT scan is taken in order to accurately capture the position of the tumor that day.

• Final adjustments are then made to position the patient for accuracies of less then half of a millimeter.
VMAT

• Volumetric Arc Therapy (VMAT) is an advanced form of radiotherapy

• Unlike older IMRT treatments, during which the machine must make repeated stops and starts to treat the tumor from a number of different angles, VMAT can deliver the dose to the entire tumor in a 360-degree rotation, typically in less than two minutes

• Up to eight times faster than what was previously possible
SABR for Early Prostate Cancer

• 5 treatments (delivered every other weekday)
• Theoretical advantage to delivering a higher daily dose over a shorter amount of time
• 8 studies published to date (over 2000 patients)
• Primarily used in low-risk patients
• Serious side effects seen in less than 5%

Anticancer Res. 2018 Mar;38(3):1231-1240
SABR for Early Prostate Cancer
SABR for Early Prostate Cancer

- PSA control approaches 100% for low-risk patients and is over 90% for intermediate-risk patients.
- This compares very favorably with longer treatment regimens.
- As of 2018, SABR now recommended as an option by the NCCN for patients with low-risk disease.

NCCN Guidelines

<table>
<thead>
<tr>
<th>Regimen for Definitive Therapy</th>
<th>Very-Low¹</th>
<th>Low¹</th>
<th>Favorable or good prognostic² intermediate</th>
<th>Unfavorable, or poor prognostic², intermediate</th>
<th>High and Very-High³</th>
<th>Node Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Therapies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72 Gy to 80 Gy at 2 Gy per fraction</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ with 4-6 mo ADT</td>
<td>✓ with 2-3 y ADT</td>
<td>✓ with 2-3 y ADT</td>
</tr>
<tr>
<td>75.6 Gy to 81.0 Gy at 1.8 Gy per fraction</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ with 4-6 mo ADT</td>
<td>✓ with 2-3 y ADT</td>
<td>✓ with 2-3 y ADT</td>
</tr>
<tr>
<td>70.2 Gy at 2.7 Gy per fraction</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ with 4-6 mo ADT</td>
<td>✓ with 2-3 y ADT</td>
<td>✓ with 2-3 y ADT</td>
</tr>
<tr>
<td>70 Gy at 2.5 Gy per fraction</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ with 4-6 mo ADT</td>
<td>✓ with 2-3 y ADT</td>
<td>✓ with 2-3 y ADT</td>
</tr>
<tr>
<td>60 Gy at 3 Gy per fraction</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ with 4-6 mo ADT</td>
<td>✓ with 2-3 y ADT</td>
<td>✓ with 2-3 y ADT</td>
</tr>
<tr>
<td>51.6 Gy at 4.3 Gy per fraction</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ with 4-6 mo ADT</td>
<td>✓ with 2-3 y ADT</td>
<td>✓ with 2-3 y ADT</td>
</tr>
<tr>
<td>37 Gy at 7.4 Gy per fraction</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 Gy at 8 Gy per fraction</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.25 Gy at 7.25 Gy per fraction</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SABR for Metastatic Disease

- Traditional RT for metastases (bone, lymph nodes) is palliative (intended to relieve symptoms)
- SABR can be used for oligometastatic disease
- Oligometastatic disease refers to 4 or fewer small areas of involvement
- Goal of SABR ablative rather than merely palliative
- Typically 3 treatments
Spine Radiosurgery
Spine Radiosurgery
SABR Delays Progression

- Recent clinical trial randomized patients with oligometastatic disease to observation vs. metastasis directed treatment (surgery or SABR)
- MDT *nearly doubled* time to progression (defined as PSA rise requiring androgen deprivation therapy)

Conclusions

- SABR/SBRT now part of NCCN guidelines for primary treatment of low-risk prostate cancer
- Although a “newer” technique, 5 year results appear comparable to longer treatment regimens
- Side effects usually mild
- SABR can significantly prolong time to progression in patients with limited metastatic disease
THANK YOU!